
Decoding estimates
The what, why and how of estimation

simply brilliant thinkers
making software brilliantly simple

The 10th annual State of Agile Report

The importance of estimates

Some reasons to estimate

● Budget setting

● Planning releases

● Stakeholder management

● Go/No-go decisions

What’s the best way to find out
how long something will take?

The only way to know for sure how
long something will take, is to do it,
and measure how long it took.

Everything else involves
compromise.

What’s the next best way?

Do the same thing again and again.

Predictability vs Innovation

 Predictability Innovation

Konstantin Kudryashov
http://stakeholderwhisperer.com/posts/2016/1/innovation-slider

http://stakeholderwhisperer.com/posts/2016/1/innovation-slider

Dave Snowden
 https://commons.wikimedia.org/w/index.php?curid=33783436

https://commons.wikimedia.org/w/index.php?curid=33783436

What actually is an estimate?

Steve McConnell
“Software Estimation - Demystifying the Black Art”

“A good estimate is an estimate that provides a
clear enough view of the project reality to allow
the project owner to make good decisions about
how to control the project to hit its targets.”

A characterisation of the work to be done

An estimate range

Your confidence in that estimate

A list of factors that could affect either the estimate or your
confidence level

Not a raw number!

What we mean by an “estimate”

Estimate examples

“This is a minor update to an existing
project, mostly small features and
tweaks.

We estimate 12 to 15 days for a single dev
who was involved in the initial build, with
a high degree of confidence.

If we have to give the work to someone
new to the project the estimate could
double as there is a lot of context to
absorb.”

“This is a major new feature using technology
we've got very little experience with.

It's between 4 and 6 sprints for a team that are
already familiar with the client's previous projects.

Most of the work is actually fairly well understood,
but a critical part involves the new tech.

We have a high degree of confidence that most
of the work could be done in up to 3 sprints.
We have a low degree of confidence that the
novel parts could be done in 1 to 3 sprints. We
can't be more accurate with our current
understanding of the tech.

We could improve our confidence by spending a
targeted 3 days doing a spike with the new tech.”

The challenge?

Predicting the
future is hard!

The planning fallacy

Specification problem/Heisenberg requirements

Jeff Patton
“User Story Mapping: Discover the Whole Story, Build the Right Product”

The cone of uncertainty

Steve McConnell
“Software Estimation - Demystifying the Black Art”

Mitigating
uncertainty

Flip that cone around!

Compare with historical data

Buckets/Affinity estimation

 Simple ComplexTask 4

Task 1Task 3 Task 2

Task 5

Bracketing to estimate

● One day?

● One year?

● One week?

● Six months?

● One month?

● Three months?

Some things are more predictable than others.

You can’t get rid of uncertainty completely.

But… you can work with it, rather than ignoring it.

A broad estimate isn’t necessarily a bad estimate.

And you can learn to produce better estimates.

Key takeaways

Thank you!

simply brilliant thinkers
making software brilliantly simple

